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Abstract— In this paper, we consider a discrete-time multi-
agent system involving N cost-coupled networked rational
agents solving a consensus problem, and a central Base Station
(BS), scheduling agent communications over a network. Due to
an average bandwidth constraint on the number of transmis-
sions, the BS can let at most Rd < N agents to access their state
information through the network on average. For the scheduling
problem, we propose a novel weighted age of information (WAoI)
metric. Then, under standard information structures, we are
able to separate the estimation and control problems for each
agent. We first solve an unconstrained MDP problem and then
compute an optimal policy for the original problem using the
solution to the former problem. Next, we solve the consensus
problem using the mean-field game framework wherein we
first design decentralized control policies for a limiting case
of the N–agent system as N → ∞, and prove the existence
of a unique mean-field equilibrium. Consequently, we show
that the obtained equilibrium policies constitute an ϵ–Nash
equilibrium for the finite agent system. Finally, we validate the
performance of both the scheduling and the control policies
through numerical simulations.

I. INTRODUCTION

With the emergence of time-critical applications such as
real-time monitoring in surveillance systems, autonomous
vehicular systems, internet-of-things and cyberphysical secu-
rity [1], networked control systems (NCS) promise interesting
research directions within both the communication and the
controls community. Such systems involve large populations
of spatially distributed agents, and allow for remote informa-
tion sharing and decentralized execution of the designated
tasks. However, while decentralization reduces the storage
complexity of the servers, limited information availability
directly affects the system performance. Thus, appropriate
information structures need to be assigned to each system
component alongside timely and accurate transmission of
time-sensitive sensor measurements to the corresponding
control units. All these factors are critical in determining
the optimal scheduling and control policies, the design of
which forms the major objective of this paper.

In this paper, we consider a discrete-time problem among
N + 1 players (N agents and a Base Station (BS)). The N
cost-coupled agents solve a consensus problem [2], where
each agent constitutes two active decision makers–a con-
troller and an estimator, which have access to their state
information through a wireless communication network, con-
trolled by the BS as shown in Fig. 1. As in the case of the real
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world wireless communication systems, the medium connect-
ing the BS with the agents has a limited average bandwidth of
Rd < N units. Due to this bottleneck, the agents may have
intermittent access to their state information. To optimally
schedule the wireless communication between the agents, we
propose a novel Age of Information (AoI) based performance
metric for the BS called the Weighted-AoI (WAoI). This
poses a novel N + 1 agent game where the N agents are
individually trying to solve a consensus problem among
themselves while the BS is trying to minimize a WAoI based
metric using a scheduling policy. Due to the presence of a
large population of agents communicating over the network,
we solve the consensus problem using a mean-field game
(MFG) setting, and finally provide approximate Nash policies
for the N–agent game problem.

Related Literature: Since the seminal works [3], [4]
established separation properties in systems with limited
information, there has been quite a lot of work on infor-
mation structures in stochastic decision making problems
[5]. Further, works dealing with networked control problems
include (but are not limited to) [6] with uninterrupted, and
[7]–[9] with intermittent communications under contention
and/or constraints on the resource acquisitions or the number
of transmissions. These works, however, contain no strategic
interaction between the agents as in a game setting, where the
scalability is the primary concern as the complexity increases
exponentially with the number of agents.

The novel idea of MFGs [10], [11] solves the scalability
problem by considering the limiting case as the number of
agents grows, i.e., N → ∞. As N gets large, individual
deviations have negligible effect on the mass of agents
(mean-field), causing strategic interaction between agents to
disappear. The game can now be characterized by the inter-
action between a generic agent and the mean-field. While the
earliest works in MFGs dealt with continuous-time systems,
research on discrete-time setting has recently gained momen-
tum, especially the benchmark Linear-Quadratic MFGs (LQ-
MFGs) [12], [13]. Except for intermittent communication
in [12], most works in LQ-MFGs consider continuous and
reliable communication. A recent work [2] deals with the
case where agents have access to their states through a
noisy channel controlled by a fixed scheduler. In this paper,
however, we utilize the emerging notion of AoI to devise
optimal scheduling policies over a bandwidth constrained
network.

Age of information was introduced to measure the timeli-
ness of information in communication networks. Scheduling
problems in AoI have received significant attention recently.
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Fig. 1: A prototypical NCS showing hierarchy of decision making
at the Base Station and the agents. Solid blocks (Base Station,
Decoders, Controllers) denote active decision makers while dotted
blocks (plants) denote passive components. Dashed lines denote a
wireless transfer medium while bold lines denote wired transfer.

Among the policies employed for solving scheduling prob-
lems include the maximum-age-first policy [14], and the
maximum-weighted-age-reduction policy [15], among oth-
ers. Age-optimal scheduling policies have been obtained
by using MDP formulation in [16], [17]. Recently, AoI
has also been studied in the context of networked control
problems. In [18], the authors compared the performances
of AoI and value of information (VoI) based scheduling
algorithms. While [19] proposes a discounted error scheduler
by using MDP approach for a truncated state-space of the
AoI, [20] studies a resource allocation problem to minimize
MSE through AoI. A detailed literature review on AoI can
be found in [21].

Contribution: In this work, we solve a large population
game problem involving N networked dynamical agents in-
teracting strategically with each other to minimize individual
coupled cost functions and a BS aiming to minimize a
performance measure by scheduling communication over a
bandwidth-constrained wireless medium. For the scheduling
problem, inspired by the Age of Incorrect Information (AoII)
metric [22], we first introduce a weighted AoI metric as the
performance measure for the BS, which is a function of the
agent’s estimation error (due to intermittent transmissions by
the BS) and the AoI at the controller. Then, we construct
a randomized scheduling policy to solve the scheduling
problem at the BS. Finally, due to the scalability issue in
solving the consensus problem for large N , we use the
MFG framework to construct ϵ-Nash strategies with ϵ =
O(1/

√
minθ∈Θ |Nθ|), where |Nθ| is the number of agents

of type θ ∈ Θ, obtained by the existence, uniqueness and
linearity of the Mean-Field Equilibrium.

Organization: We formulate the N + 1 player game
problem in Sec. II. In Sec. III, we analyze the centralized
scheduling problem of the BS and construct an optimal
policy for the same in Sec. IV. In Sec. V, we solve the
consensus problem and show its ϵ–Nash property for the
finite agent game problem. In Sec. VI, we provide numerical
analysis and conclude the paper in Sec. VII. The proofs of
the supporting lemmas, propositions and theorems can be
found in the full version of the paper [23] along with detailed
additional simulations.

Notations: Z+ denotes the set of non-negative integers.

For a matrix S and a vector x, ∥x∥2S := x⊤Sx. Further,
[N ] := {1, 2, · · · , N} and tr(·) denotes the trace of its
argument. The Euclidean norm for vectors, or the induced
2-norm for matrices is denoted by ∥ · ∥, and ∥ · ∥F denotes
the Frobenius norm of its argument. Further, Ya:a+k :=
{Y [a], · · · , Y [a + k]}, k ≥ 0. All empty summations are
set to 0.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We start by formulating the N+1 player game, which can
be expressed as 1) a consensus problem between N agents
and 2) a centralized scheduling problem of the BS.

A. Consensus Problem

We consider a discrete-time N -agent game on an infi-
nite horizon, communicating over a wireless network. Each
agent’s dynamics evolves as:

Xi[k+1]=A(θi)X
i[k]+B(θi)U

i[k]+W i[k], (1)

for a time-step k ∈ Z+ and agent i∈ [N ]. Here Xi[k] ∈ Rn

and U i[k] ∈ Rm are the state and control action, respectively
of agent i. The noise process for agent i, W i[k] ∈ Rn has
zero mean and bounded positive-definite covariance KW (θi).
Agent i’s initial state Xi[0] is independent of the noise
process and is assumed to have a symmetric density with
mean νθi,0 and bounded positive-definite covariance Σx. The
time-invariant system matrices A(θi) ∈ Rn×n and B(θi) ∈
Rn×m depend on the agent type θi ∈ Θ := {θ1, · · · , θp}
which is chosen according to the empirical probability mass
function PN (θ = θi), θ ∈ Θ. It is further assumed that
|PN (θ)− P(θ)| = O(1/N) for all θ ∈ Θ, where P(θ) is the
limiting distribution. We now state the following assumption
on information transmission over the network.

Assumption 1. The wireless links connecting system com-
ponents are error-free and the BS can send measurements to
the corresponding controllers instantaneously.

Due to Assumption 1, the information can be transmitted
from the plant to the controller for its next action without
any delay, if the BS decides to send an update for that agent.

The N + 1-player system is shown in Fig. 1. For each
agent, the full-state information of the plant Pi is relayed
to the decoder Di through a (noiseless) two-hop network
(called uplink and downlink) via a centralized BS, which
is then communicated to the controller Ci for generating
an actuation signal. The uplink in the wireless network is
ideal while the downlink can transmit only Rd < N users
on average, which acts as a bottleneck for transmission of
information from the plants to their respective controllers.
Under Assumption 1, the state of the ith plant as observed
by the ith decoder is given as zi[k] = Xi[k], if γd,i[k] =
1, or zi[k] = φ, if γd,i[k] = 0, where γd,i[k] = 1
denotes that current state information is transmitted to the
ith decoder (over the downlink) while γd,i[k] = 0 stands for
no transmission (or φ). Additionally, between transmission
times, the decoder calculates the minimum mean square
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estimate Zi[k] = E
[
Xi[k] | Id,i[k]

]
based on its informa-

tion history Id,i[k] :=
{
zi0:k, γ

d,i
0:k, U

i
0:k−1

}
, which is then

sent to the controller. Typically, in the game problems as
formulated above, the control action of agent i can depend
on other agents’ state and control actions, and hence the
information history of the ith controller would be given by
Ic,con,i[k] := {U i

0:k−1, Z
i
0:k}i∈[N ]. Here, Ic,con,i[k] denotes

a centralized information structure [2] where the controller
has knowledge of not only its own but also of other agents’
controller states and actions. This entails that Mc,con

i = {πi |
πi is adapted to σ(Ic,con,i[s], s = 0, · · · , k)}, where σ(·) is
the σ–algebra adapted to its argument and Mc,con

i is the
space of admissible centralized control policies for agent i.

Now, each agent i aims to minimize its infinite-horizon
average cost function

JN
i (πi, π−i) := lim sup

T→∞
(2)

1

T
E

[
T−1∑
k=0

∥Xi[k]− 1

N

N∑
j=1

Xj [k]∥2Q(θi) + ∥U i[k]∥2R(θi)

]
,

where Q(θi) ≥ 0 and R(θi) > 0. The consensus-like term
1
N

∑N
j=1 X

j [k] couples the agents’ cost. The cost function
penalizes deviations from the consensus term and large con-
trol effort. We define π−i := (π1, · · · , πi−1, πi+1, · · · , πN ),
where πi := (πi[1], πi[2], · · · , ) ∈ Mc,con

i denotes a control
policy for the ith agent. Finally, the expectation in (2) is
taken with respect to the noise statistics and the initial state
distribution. We note now that having access to (and keeping
track of) the information of other agents in a large population
setting is quite difficult, and hence we will resort to the MFG
framework (in Section V) to characterize decentralized con-
trol policies whereby decisions are made based on an agent’s
local information. We also remark here that the estimator and
the controller work together in a team setting to minimize
(2), and as we will see, can be designed independently of
each other. Finally, the BS centrally schedules transmissions
over the downlink as discussed next.

B. Centralized Scheduling Problem
Consider the most recently received observations by con-

troller i as zi[si[k]], where si[k] = sup{s ∈ Z+ : s ≤
k, zi[s] ̸= φ} denotes the latest transmission time. By
definition, the AoI is the time elapsed since the generation
time-stamp of the most recent packet at the plant. Thus, the
AoI ∆i[k] at the controller Ci is given as ∆i[k] = k− si[k].
More precisely, we have ∆i[k + 1] = 0 if γd,i[k] = 1, and
∆i[k+1] = ∆i[k] + 1, if γd,i[k] = 0. Thus, the constrained
scheduling problem is defined as:

Problem 1.

inf
ζd∈Zd

JS(ζd) := lim sup
T→∞

1

T
E

[
1

N

T−1∑
k=0

N∑
i=1

ηi[k]∆i[k]

]

s.t. lim sup
T→∞

1

T

T−1∑
k=0

N∑
i=1

γd,i[k] ≤ Rd,

where ζd = [ζd,1, · · · , ζd,N ]⊤, Zd is the space of schedul-
ing policies across all agents, and γd,i[k] is chosen from

the policy ζd,i at instant k. Further, we define ηi[k] as
the importance weight associated with agent i given by
ηi[k] := E[∥ei[k]∥2], where ei[k] := Xi[k] − Zi[k] is the
estimation error between the plant state and the controller
state at instant k. Finally, the expectation is taken over the
stochasticity induced by (possibly) randomized policies.

III. CENTRALIZED SCHEDULING PROBLEM ANALYSIS

We start this section by computing the best estimate at
the decoder. Also, to avoid cluttering notations, we use
the shorthands Ai := A(θi), Bi := B(θi), and KW i :=
KW (θi), unless specified otherwise.

Based on its input zi[k], the decoder computes the best
estimate of the state as Zi[k] = Xi[k], if γd,i[k] = 1,
and Zi[k] = E

[
Xi[k] | Id,i[k], γd,i[k] = 0

]
if γd,i[k] = 0,

where E
[
Xi[k] | Id,i[k], γd,i[k] = 0

]
= AiE[Xi[k − 1] |

Id,i[k − 1]]+BiU
i[k − 1]+Ŵ i[k − 1] and Ŵ i[k − 1] :=

E
[
W i[k − 1] | γd,i[k] = 0

]
. Note that the presence of trans-

mission instants in the conditioning leads to the extra term
Ŵ i[k− 1]. While this conveys additional information on the
state of the plant in the absence of any communication be-
tween the BS and the decoder, it is typically hard to compute
optimally. Here, however, it is easy to show using similar
arguments as in [7], and assumptions of symmetric densities
of initial state and the noise process, that Ŵ i[k − 1] = 0.
Hence, the optimal decoder is given by

Zi[k] =

{
Xi[k], if γd,i[k] = 1,

AiZ
i[k − 1]+BiU

i[k − 1], if γd,i[k] = 0,
(3)

where AiZ
i[k − 1] + BiU

i[k − 1] can be thought of as the
recursive estimate calculated between transmission instants
based on the information history. The signal Zi[k] can now
be computed easily using (3). We summarize the above
results in the following lemma.

Lemma 1. The estimation error ei[k] for all agents is
independent of the control inputs, and hence there is no dual
effect of control [2]. Moreover,

ei[k] =

{
0, if γd,i[k] = 1,∑∆i[k]

l=1 Al−1
i W i[k − l], if γd,i[k] = 0,

(4)

and the covariance of the estimation error can be formulated
in terms of the AoI, i.e., E[∥ei[k]∥2] := h(∆i[k], Ai,KW i) =∑∆i[k]

l=1 tr
(
Al−1

i

⊤
Al−1

i KW i

)
.

Thus, Problem 1 can be equivalently written as:

Problem 2.

inf
ζd∈Zd

lim sup
T→∞

1

T
E

[
1

N

T−1∑
k=0

N∑
i=1

h(∆i[k], Ai,KW i)∆
i[k]︸ ︷︷ ︸

=:g(∆i[k],Ai,KWi )

]

s.t. lim sup
T→∞

1

T

T−1∑
k=0

N∑
i=1

γd,i[k] ≤ Rd. (5)

We note that Problem 2 does not only depend on the AoI
but also on the system parameters of each agent such as
Ai, and KW i . This entails that g(∆i[k], Ai,KW i) takes into
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account the system dynamics as well. Hence, we refer to it
as Control-Aware AoI [18]. Additionally, as a consequence
of this reformulation, the scheduler does not have to store the
plant states and the controller actions for any agent. Thus,
no additional storage space is required for the scheduler.

Remark 1. Note that the AoI, ∆i[k], may not be omitted at
the cost function in Problem 2. This is because the error over
an infinite horizon may approach a finite limit (for instance,
consider stable agents), which can cause the AoI of those
agents to approach infinity since a trigger for information
transmission may never be generated for these agents. This
can lead to poor regulation. Thus, the use of a weighted
metric as in Problem 2 penalizes both the error as well as
the AoI and is appropriately justified.

Next, we observe that the constraint (5) entails that
more than Rd users are able to transmit over the channel
at some times as long as the average transmissions
satisfy the constraint over the infinite horizon. Thus, to
solve Problem 2, we reformulate the N–agent scheduling
problem as a single agent discrete-time MDP to find
the optimal scheduling strategies. To this end, we
introduce the Lagrangian function as L(ζd, λ) :=
lim supT→∞

1
T E[

1
N

∑T−1
k=0

∑N
i=1[g(∆

i[k], Ai,KW i) +
λγd,i[k] − λRd

N ]], where λ ≥ 0 is the Lagrange multiplier.
Such a multiplier can be thought of as the cost of scheduling
for each agent over the channel. Thus, for a fixed λ, the
decoupled single user optimization problem is defined as:

Problem 3.

inf
ζd,i∈Zd,i

lim sup
T→∞

1

T
E

[
T−1∑
k=0

g(∆i[k], Ai,KW i)+λγd,i[k]

]
.

Since Problem 3 is solved for a single user, we henceforth
drop the superscript i until mentioned otherwise.

IV. DECENTRALIZED SCHEDULING PROBLEM

We now formulate Problem 3 into a discrete-time
controlled MDP M, defined by the quadruplet M :=
(S,A,P, C). The state space S = Z+ is the set of all
possible AoI of the agent and is countably infinite. The action
space is A = {0, 1}, where a = 1 denotes that the agent
is connected over the channel while a = 0 stands for no
transmission. Note here that a is different from γd[k], which
is the action under a constrained problem. The probability
transition function P denotes the evolution of the states of
the controlled system. When a = 0, we have P(∆ → ∆ +
1) = 1. When a = 1, we have P(∆ → 0) = 1. We further
note that although the states evolve deterministically, writing
them in the form of an MDP will simplify the notation. The
one-stage cost C(∆, a) = g(∆, A,KW ) + λa denotes the
cost incurred when an action a is taken at the state ∆. Next,
we formally define the decentralized scheduling problem.

Problem 4.

inf
ζd∈Zd

V (∆, γd) :=lim sup
T→∞

1

T
E

[
T−1∑
k=0

C(∆[k], a[k])

]
. (6)

In the following, we provide the solution to Problem 4.

A. Single-agent Deterministic Scheduling Policy

We first provide the following definition to be used in
Theorem 1 for characterizing optimality of a threshold policy.

Definition 1. A scheduling policy ζd for the MDP M is
g(∆)–optimal if it infimizes the time-average cost V (∆, ζd).

We now state the following theorem regarding existence
of optimal policy and its threshold structure.

Theorem 1. Given λ ∈ R, there exists a g(∆)–optimal
stationary deterministic policy solving Problem 4, and has a
threshold structure, i.e., ∃τ := τ(λ,A,KW ) such that

a =

{
1, ∆ ≥ τ,
0, ∆ < τ.

(7)

Having established the threshold structure of the g(∆)–
optimal policy for the single-agent scheduling Problem
4, we can restrict our attention to the finite-state MDP
with the state space S ′ = {0, 1, · · · , τ}. Then, the
one-stage cost for the time-average cost function satis-
fies the Bellman’s equation given by V (∆) + σ∗ =
min {C(∆, 0)+V (∆ + 1), C(∆, 1) + V (0)}, where σ∗ is
the average cost under the g(∆)–optimal policy, and V (∆)
is the optimal cost.

Next, we obtain an analytical expression for finding τ as
a function of λ and the system parameters. We know from
Theorem 1 that a = 1 is optimal at ∆ = τ . Then, from the
Bellman equation, we have C(τ, 1)+V (0)−σ∗ < C(τ, 0)+
V (∆ + 1)− σ∗, which yields

V (0) + λ < V (τ + 1). (8)

Further, at ∆ = τ − 1, a = 0 is optimal. Thus, by the
same argument, we have that V (τ) ≤ λ + V (0), which on
combining with (8) leads to V (τ) ≤ λ+ V (0) < V (τ + 1).
Furthermore, by using a = 1 at ∆ = τ , we get

V (∆) = g(∆, A,KW ) + λ+ V (0)− σ∗. (9)

Since V (∆) is monotonically non-decreasing in ∆, ∃η ∈
[0, 1) such that V (τ + η) = λ + V (0), and by using (9),
σ∗ = g(τ +η,A,KW ). Further, for ∆ < τ , we have V (∆+
1)− V (∆) = σ∗ − g(∆, A,KW ), which on summing from
∆ = 0 to ∆ = τ − 1 gives

V (τ) = V (0) + σ∗τ −
τ−1∑
∆=0

g(∆, A,KW ). (10)

Next, we have that g(∆, A,KW ) =
∑∆

r=1 tr((A
r−1)⊤

Ar−1KW )∆ =
∑∆

r=1∥Ar−1K0.5
W ∥2F∆. Substituting this in

(10), we can calculate the value of τ by using (9) and (10).
Now, we provide a simplified expression to compute τ for

scalar systems (n = 1 in (1)). Equating the values of V (τ)
from (9) and (10), we arrive at the equation (τ + 1)g(τ +
η,A,KW ) −

∑τ
l=0 g(l, A,KW ) = λ. By substituting the

expression for g(·, ·, ·) in this equation yields{
f1(τ,A,KW , λ) = 0, A ̸= 1,
f2(τ,KW , λ) = 0, A = 1,

(11)

where the closed-form expressions for (11) are provided in
[23, (23)] We note that (11) is an implicit equation in τ and
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η for given values of γ, A and KW . Thus, the value of τ can
be calculated by plotting η vs τ , and choosing the integer
value of τ for an admissible η.

B. Multi-agent Randomized Scheduling Policy

In the previous subsection, we showed the existence of a
single-agent stationary deterministic policy for a fixed λ. In
this subsection, we return to the multi-agent case and obtain
the optimal value of λ. Consequently, we use the threshold
characterization of the deterministic policy to obtain the
optimal solution to Problem 2. Henceforth, we also resume
the use of superscript i to denote the agent index.

Consider the threshold for the ith agent given by τ i(λ) :=
τ i(λ,Ai,KW i). Then the agent is connected to its respective
controller every (τ i(λ) + 1)–th instant. Thus, under the
constraint (5), we have that W (λ) :=

∑N
i=1

1
τ i(λ)+1 ≤ Rd.

In order to find the optimal value of the Lagrange
multiplier solving Problem 2, we use the Bisection search
procedure [24], which we summarize next. Since λ ≥ 0,
we initialize two parameters λ

(0)
l = 0 and λ

(0)
u = 1. We

then calculate the threshold parameters τ i(λ
(0)
u ) for all i,

by using the piece-wise definition in (11). Consequently, we
iterate by setting λ

(j+1)
l = λ

(j)
u and λ

(j+1)
u = 2λ

(j)
u until the

constraint W (λ) ≤ Rd is satisfied for λ(r)
u , for some integer

r. Then, we define the interval [λ
(r)
l , λ

(r)
u ]. This interval

contains the optimal value of the multiplier λ∗, which can
be calculated using the Bisection method. The iteration stops
when |λ(m)

u − λ
(m)
l | ≤ ϵ, for the iterating index m and for a

suitably chosen ϵ > 0.
We next construct a stationary randomized policy solving

Problem 2. Define λ∗
l = λ

(m)
l and λ∗

u = λ
(m)
u as ob-

tained above. Further, let the stationary deterministic poli-
cies γd,i

D1 and γd,i
D2 as obtained from Theorem 1 be those

corresponding to λ∗
l and λ∗

u, respectively, where λ∗
l 7→

τl(λ
∗
l ) := {τ1l (λ∗

l ), · · · , τNl (λ∗
l )}⊤ and λ∗

u 7→ τu(λ
∗
u) :=

{τ1u(λ∗
u), · · · , τNu (λ∗

u)}⊤. Also, we define Ru
d and Rl

d as
the total bandwidth used corresponding to the multipliers
λ∗
u and λ∗

l , respectively. We note that τ il differs from τ iu by
at most one state. Then, we define the probability p and the
deterministic policies for all i as:

p := (Rd −Ru
d )/(R

l
d −Ru

d ), (12)

ζd,iD1(∆
i) :=

{
1, ∆i ≥ τ i

l (λ
∗
l , Ai,KW i)

0, ∆i < τ i
l (λ

∗
l , Ai,KW i)

, (13)

ζd,iD2(∆
i) :=

{
1, ∆i ≥ τ i

u(λ
∗
u, Ai,KW i)

0, ∆i < τ i
u(λ

∗
u, Ai,KW i)

. (14)

The randomized policy γd for the relaxed Problem 2 can
then be obtained as:

ζd,i = pζd,iD1 + (1− p)ζd,iD2, ∀i ∈ [N ]. (15)

Next, we have the following proposition which establishes
optimality of the above randomized policy for Problem 2.

Proposition 1 (Optimality of Randomized Policy). Under
Assumption 1, the policy (12)-(15) is optimal for Problem 2.

Now, since the solution to the scheduling problem is
complete, in the next section, we proceed to establish the
ϵ–Nash property of the mean-field game solution.

V. N AGENT CONSENSUS PROBLEM

In this section, we solve the consensus problem using the
BS’s policy. To this end, we first consider the limiting game
called the mean-field game (MFG) as N → ∞. Under this
setting, the empirical coupling term in (2) is approximated
by a known deterministic sequence (or the MF trajectory),
whose closeness is justified by analysis. This principle is the
well known Nash certainty equivalence principle [10] and
reduces the game problem to a stochastic optimal control
problem of a generic agent with a coupled consistency
condition. The equilibrium solution obtained (called the
mean-field equilibrium (MFE)) will be shown to constitute
an ϵ–Nash approximation to the finite agent game.

A. Stochastic Optimal Tracking Control

Consider a generic agent of type θ from an infinite
population with dynamics

X[k + 1] = A(θ)X[k] +B(θ)U [k] +W [k], k ∈ Z+, (16)

where X[k] ∈ Rn and U [k] ∈ Rm are the state vector
and the control input, respectively. Further, the initial state
X[0] is assumed to have a symmetric density function with
E[X[0]] = νθ,0 and cov(X[0]) = Σx is bounded. Next,
Wk ∈ Rn is a zero-mean i.i.d. Gaussian noise with finite
covariance KW (θ). All covariance matrices are assumed to
be positive-definite. The objective function of the generic
agent is given by

J(µ,X̄) :=lim sup
T→∞

1

T
E

[
T−1∑
k=0

∥X[k]−X̄[k]∥2Q(θ)+∥U [k]∥2R(θ)

]
(17)

where µ := (µ[1], µ[2], · · · , ) ∈ Md,con and is an admissible
control policy of the generic agent. Further, the admissi-
ble set Md,con := {µ | µ is adapted to σ(Id,con[s], s =
0, 1, · · · , k)} is the space of decentralized control policies
for the generic agent and Id,con[0] := {Z[0]}, Id,con[k] :=
{U0:k−1, Z0:k}, k ≥ 1, is the local information history of
the generic agent. Recall that this is in contrast to Ic,con[k],
which includes information of other agents as well. The
information structure for the generic agent’s decoder is
defined similar to that in Subsection II-A, except with the
superscript i removed. Further, X̄ = (X̄[1], X̄[2], · · · , ) is
the MF trajectory and denotes the infinite player approxi-
mation to the consensus term in (2) and serves to decouple
the otherwise coupled game problem into a tracking (LQT)
problem. Finally, the expectation above is taken with respect
to the noise statistics and the initial state distribution.

To solve the LQT problem with dynamics in (16) and the
cost in (17), we first state the following assumption.

Assumption 2. (i) The pair (A(θ), B(θ)) is controllable
and (A(θ),

√
Q(θ)) is observable.

(ii) The MF trajectory belongs to the space of bounded
functions, i.e., X̄ ∈ X := {X̄[k] ∈ Rn | ∥X̄∥∞ :=
supk≥0 ∥X̄[k]∥ < ∞}.

We remark here that Assumption 2 is standard in the
MF-LQG literature [12], [25]. Next, we define a MFE by

4776

Authorized licensed use limited to: University of Illinois. Downloaded on October 07,2023 at 04:31:23 UTC from IEEE Xplore.  Restrictions apply. 



introducing the following operators [13]: (1) Ξ : X →
Md,con, defined as Ξ(X̄) = argminµ∈Md,con J(µ, X̄), gives
the optimal control policy for a given MF trajectory, and (2)
the consistency operator Λ : Md,con → X that regenerates a
MF trajectory for an admissible control policy µ ∈ Md,con.

Definition 2 (Mean-Field Equilibrium (MFE) [2]). The pair
(µ∗, X̄∗) ∈ Md,con × X is a MFE if, µ∗ = Ξ(X̄∗) and
X̄∗ = Λ(µ∗). In other words, X̄∗ = Λ ◦ Ξ(X̄∗).

Now, the central scheduling policy is fixed from the
previous section, similar to [2], we have the following result
for the optimal tracking control of a generic agent.

Proposition 2. Consider the generic agent (16) with con-
troller state as in (3) and cost function in (17). Then, under
Assumptions 1-2, the following hold true:

1) The optimal decentralized control action of a generic
agent is given as

U∗[k] = −Π(θ)Z[k]− L(θ)r[k + 1], (18)

where L(θ) = (R(θ) +B(θ)⊤K(θ)B(θ))−1B(θ)⊤, Π(θ) =
L(θ)K(θ)A(θ), and K(θ) is the unique positive defi-
nite solution to the algebraic Riccati equation K(θ) =
A(θ)⊤[K(θ)A(θ) −K(θ)⊤B(θ)Π(θ)] + Q(θ). Further, the
trajectory r[k] satisfies the backward dynamics r[k] =
H(θ)⊤r[k+1]−Q(θ)X̄[k], with the initial condition r[0] =
−
∑∞

j=0 (H(θ)j)⊤ Q(θ)X̄[j] and H(θ) = A(θ)−B(θ)Π(θ)
is Hurwitz.

2) The difference equation for r[k] has a unique solution
in X , given as r[k] = −

∑∞
j=k (H(θ)j−k)

⊤
Q(θ)X̄[j].

3) The optimal cost J(µ∗, X̄) is bounded from above by a
function of system parameters.

With the above result, we proceed with the analysis of the
existence and uniqueness of the MFE in the next subsection.

B. Mean-Field Analysis

We now establish existence and uniqueness of the MFE
by constructing the MF operator as follows. Consider the
closed-loop system in (3) with the control policy in (18):

Z[k + 1] ={
H(θ)Z[k]−B(θ)L(θ)r[k + 1] +W [k], γd[k + 1] = 1,
H(θ)Z[k]−B(θ)L(θ)r[k + 1], γd[k + 1] = 0,

where γd[k] is chosen from the policy ζd of Section IV-B.
The above can be rewritten as

X[k+1]=H(θ)X[k]−B(θ)L(θ)r[k+1]+B(θ)Π(θ)e[k]+W [k],

where e[k] is defined in (4). By taking expec-
tation on both sides and substituting r[k] from
Proposition 2, we get X̂θ[k] = H(θ)kνθ,0 +∑k−1

j=0H(θ)
k−j−1B(θ)L(θ)

∑∞
s=j+1(H(θ)

s−j−1)⊤Q(θ)X̄[s],
where X̂θ[k] = E[X[k]] is the aggregate dynamics across
agents of type θ and we use the fact that E[e[k]] = 0. Next,
using the empirical distribution from Section II, we define
the MF operator as T (X̄)[k] :=

∑
θ∈Θ X̂θ[k]P(θ), and state

the following assumption before we present the main result.

Assumption 3. We assume Ȟ(θ) := ∥H(θ)∥+ υ < 1,∀θ ∈
Θ, where υ =

∑
θ∈Θ

∥Q(θ)∥∥B(θ)L(θ)∥
(1−∥H(θ)∥)2 P(θ).

It is common in the literature [10], [13] to invoke the above
assumption; however, it is stronger than the corresponding
assumption in [12] and leads to the linearity property of the
MF trajectory, which can then be easily computed offline.

Theorem 2. Under Assumptions 1-3, the following state-
ments hold true: (1) The operator T (X̄) ∈ X , ∀X̄ ∈ X .
Furthermore, there exists a unique X̄∗ ∈ X such that
T (X̄∗) = X̄∗, and (2) X̄∗[k] follows linear dynamics, i.e.,
∃ E ∗ ∈ E := {E ∈ Rn×n : ∥E ∥ < 1, X̄∗[k+1] = E X̄∗[k]},
where X̄∗[k] is the equilibrium MF trajectory of the agents,
and X̄∗[0] =

∑
θ∈Θ νθ,0P(θ).

We note that while Theorem 2 (1) gives us a unique
MFE, the linearity of the MF trajectory in (2) makes the
computation of this equilibrium trajectory tractable, which
would otherwise have involved a non-causal infinite sum.
Further, as a result of the linearity, we arrive at an explicit
convergence rate between the equilibrium trajectory and the
coupling term in (2) in Lemma 3.

C. ϵ–Nash Analysis

In this subsection, we show that the decentralized equi-
librium control policy obtained from the MF analysis is
approximately Nash for the finite-agent system. We start by
stating the following lemmas, which show that the closed-
loop system is stable under the MFE solution, and that the
equilibrium MF trajectory approximates the finite-agent state
average in the mean-square sense.

Lemma 2. Suppose that Assumptions 1-3 hold. Then, the
closed-loop system (1) is uniformly mean-square stable un-
der the decentralized equilibrium control policy (18), i.e.,

supN≥1 maxi∈[N ] lim supT→∞
1
T E

[
T−1∑
k=0

∥∥X∗,i[k]
∥∥2 ]<∞.

Lemma 3. Under Assumptions 1-3, the equilibrium MF tra-
jectory converges (in the mean-square sense) to the coupling
term in (2) with a rate of O

(
1

minθ∈Θ |Nθ|
)
, where Nθ ⊂ [N ]

is the number of agents of type θ.

We next define ϵ-Nash equilibrium as follows.

Definition 3. [2] The set of control policies {µ∗,i, 1 ≤ i ≤
N} constitute an ϵ–Nash equilibrium with respect to the cost
functions {JN

i , 1 ≤ i ≤ N}, if there exists ϵ > 0, such that

JN
i (µ∗,i, µ∗,−i) ≤ inf

πi∈Mc,con
i

JN
i (πi, µ∗,−i) + ϵ, ∀i ∈ [N ].

Then, we have the following theorem stating that the
control laws prescribed by the MFE constitute an ϵ-Nash
equilibrium in the finite population case.

Theorem 3. Suppose Assumptions 1-3 hold. Then the set of
decentralized control policies {µ∗,i, 1 ≤ i ≤ N}, constitute
an ϵ–Nash equilibrium for the N–agent LQ-mean field game
with bandwidth limits. In particular, we have that

JN
i (µ

∗,i, µ∗,−i) ≤ inf
πi∈Mc,con

i

JN
i (πi, µ∗,−i)+O

(
1/
√

min
θ∈Θ

|Nθ|

)
.
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Before concluding, we finally note that since Theorem 3
establishes that the decentralized equilibrium policy provides
an ϵ–Nash equilibrium for the centralized policy structure in
the N -agent game, it does so for the decentralized policy
structure also, as formulated in Section II-A.

VI. SIMULATIONS

In this section, we provide an empirical analysis of the
theoretical results. We first demonstrate the performance of
the scheduling policy γd,∗

R . We simulate the behavior of
WAoI under γd,∗

R with 4 different values of Rd = 0.6N ,
0.7N, 0.8N, 0.9N . We plot the average WAoI in Fig. 2(a),
which shows that the WAoI increases as the number of agents
being transmitted over the downlink decreases. Next, we
empirically evaluate the behavior of N = 800 agents under
the MFE policy (18). To this end, we plot the average cost of
an agent as a function of Rd in Fig. 2(b). The figure shows
a box plot depicting the median (red line) and spread (box)
of the average cost per agent over 100 runs for each value
of α. From the figure, we see that the average cost decreases
as the available bandwidth increases, aligned with intuition.
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Fig. 2: (a) shows that the average WAoI for decreases as Rd

increases, and (b) shows that average cost per agent decreases
as Rd increases.

VII. CONCLUSION

In this paper, we have studied an N + 1 player game
problem in which N agents aim to achieve consensus while
the BS schedules information over a rate-constrained network
to these agents using a WAoI metric. To solve the schedul-
ing problem, we have constructed a stationary randomized
optimal scheduling policy for it by decoupling the problem
and following an MDP approach. Next, we have solved
the game problem between the N–agents using the mean-
field game approach and employing the obtained scheduling
policy. By considering a limiting system as N → ∞,
we have first proved the existence of a unique mean-field
equilibrium and then have shown the ϵ–Nash property of the
equilibrium solution for the finite-agent system. Finally, we
have validated the theoretical results with simulations.
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[12] J. Moon and T. Başar, “Discrete-time LQG mean field games with
unreliable communication,” in IEEE CDC, December 2014, pp. 2697–
2702.

[13] M. A. uz Zaman, K. Zhang, E. Miehling, and T. Başar, “Reinforcement
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