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Abstract— In the classical communication setting, multiple
senders having access to the same source of information and
transmitting it over channel(s) to a receiver, in general, leads
to a decrease in estimation error at the receiver. However,
if the objectives of the information providers are different
from that of the estimator, this might result in interesting
strategic interactions. In this work, we consider a hierarchical
signaling game between two senders (information designers)
and a single receiver (decision maker) each having their own,
possibly misaligned, objectives. The senders lead the game
by committing to individual information disclosure policies
simultaneously, within the framework of a Nash game among
themselves. This is followed by the receiver’s action decision.
With Gaussian information structure and quadratic objectives
(which depend on underlying state and receiver’s action) for
all the players, we show that in general the equilibrium is not
unique. While we show that full revelation of the state is always
an equilibrium, we propose an algorithm to achieve non trivial
equilibria. Through simulations we show that misalignment
between senders’ objectives is beneficial for the receiver.

I. INTRODUCTION

Data plays an important role in most modern learning
and control systems. Traditionally, data collection and de-
cision making processes are coupled in the same system,
eliminating the need to transmit data, and thus suppressing
strategic interactions. Recently, with the advancement of
communication channels and cheaper data sources, infor-
mation exchange has been playing a crucial role in the
analysis of these systems. For example, consider a robot
learning to perform a task based on human demonstrations.
In order to perform the task efficiently, a large number
of human demonstrations need to be collected, but since
humans might have their own biases, this causes a possible
mismatch in the objectives [1]. Learning the underlying
task amidst these mismatched (possibly strategic) objectives
is still a problem of active interest [2]. Similar strategic
exchange of information with misaligned objectives also
arises in Federated Learning, cyber-security, and many other
economic and political interactions [3]–[5].

All the above scenarios comprise multiple senders (in-
formation designers), who have access to some information
of interest, and a decision maker (receiver) whose action
depends on this information. Further, senders’ individual
objectives would possibly depend on the receiver’s action.
Hence it is natural to model this as a hierarchical strategic
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communication game between multiple senders and a deci-
sion maker (receiver). As a motivating example, consider two
news channels that have access to an underlying true state
which is possibly random and multidimensional. If the news
sources are biased and have their own objectives, they might
benefit from strategic crafting of information. Formalizing
these interactions from the lens of game theory helps us
address the following questions: What is the effect of adding
more senders to the communication game? How do sender
biases affect the information learned by the receiver? Analyz-
ing these questions might help understand the proliferation
of misinformation through strategic information providers.

A model of strategic communication was first introduced
in the seminal work [6] where, different from the traditional
communication literature, their work considers a scenario
in which the sender has an additional bias term in the
objective which makes this problem a game. This base model
has attracted a wide range of follow-up works, including
extensions to multiple senders [7], [8] and multidimensional
settings [9]. A recent line of work pioneered in [10], [11]
(termed as Bayesian Persuasion) alternatively considers a
hierarchical signaling game where the receiver responds
to a strategy committed by the sender. This commitment
power adds benefit to the sender, and hence can be used
to characterize the optimal utility that a sender can derive
in a communication game. The last decade has seen a
surge of interest in this model from various disciplines
including control theory [9], [12], machine learning [13],
and information theory [14], [15].

Our work adds to the growing literature of multi-sender
hierarchical communication games. Reference [16] solves for
Nash equilibrium among senders and shows that there can
be more than one equilibrium, with full revelation by all
senders always being an equilibrium. Studies [17] and [18]
consider a slightly different game where senders can commit
sequentially and prove that sequential persuasion cannot
generate a more informative equilibrium than simultaneous
commitment. Both of these works consider finite state and
action spaces where state is a one-dimensional variable. In
contrast, in the present paper we consider a more general
infinite multidimensional state and action spaces while re-
stricting our attention to a Gaussian prior and quadratic
utilities. In one of the initial works in this direction reference
[19] utilizes semi-definite programming (SDP) to solve a
single sender persuasion game by computing a lower bound
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on the sender’s cost 1 and prove that for Gaussian information
structures, linear policies can be used to achieve this lower
bound. Extensions to dynamic games [20], [21] and priors
beyond Gaussian [22] have also been studied in the literature.
However, none of these works considers games with multiple
senders. [12] considers a multi-sender communication game
and solve for a simpler symmetric equilibrium with a large
number of senders while restricting attention to senders with
symmetric objectives and special prior structure although
allowing for private state realization for each sender. [23]
provides a more detailed review regarding recent works along
this line.

Coming to the specifics of this paper, we pose a strategic
communication game between two senders and a receiver.
We solve for a hierarchical equilibrium where the senders
commit to (possibly different) information disclosure strate-
gies2 simultaneously (and thus, play a Nash game among
themselves) followed by the receiver taking a decision (and
as a result, play a Stackelberg game between senders and
the receiver) [24]. Due to the presence of two senders,
each sender faces an equilibrium computation problem in
contrast to an optimization problem as in single sender
games discussed in [19], [20]. To compute the hierarchical
equilibrium, we pose the problem in the space of posterior
covariances, propose a notion of stable posterior and design
an algorithm to identify such posteriors. We show that the
equilibrium might not be unique and identify a necessary
and sufficient condition for a posterior covariance to be in
equilibrium. Finally, we provide extensive numerical results
to demonstrate the effect of competition in information
revelation. In line with [16], a key takeaway from our work
is that in games with multidimensional infinite state spaces
and quadratic cost3 functions, the receiver benefits from
competition among multiple senders as well.

Notations: Tr(.) denotes the trace of a matrix. We denote
vectors with bold lower-case letters. For a given matrix A
and a vector y, A⊤ and y⊤ denote the transposes of that
matrix and the vector, respectively. The identity and zero
matrices are denoted by I and O, respectively. For positive
semi-definite matrices A and B, A ⪰ B means that A− B
is a positive semi-definite matrix. Eℓ×m denotes a matrix of
dimensions ℓ×m.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a non-cooperative game among 3 players,
two of them being senders, labeled as 1 and 2, who have
access to a state vector x, and the third one is a receiver
r, as depicted in Fig. 1. The state x ∈ Rp is a random
variable sampled from a zero mean Gaussian distribution
with positive-definite covariance Σx, i.e., x ∼ N(0,Σx)
with Σx ≻ O. While all objectives and Gaussian prior
statistics are common knowledge among the players, the

1In line with the control literature, most of the works discussed here
consider the scenario where each player wants to minimize their individual
cost function rather than maximizing their own utility function.

2In this paper, we use the terms strategy and policy interchangeably.
3In this paper, we use the terms objective and cost interchangeably.
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Fig. 1. The strategic communication system consisting of senders 1 and
2, and receiver r.

senders additionally have access to realization of the state
x, and hence can design or shape its transmission to r so
as to influence r’s choice of action. The game proceeds as
follows: At the beginning of the game, the senders (i = 1, 2)
commit to their individual signaling policies ηi(·) ∈ Ω
simultaneously such that yi = ηi(x) where yi ∈ Rp is the
message signal and Ω is the policy space which we consider
to be the class of all Borel measurable functions from Rp

to Rp. The receiver selects an action u = γ(η1, η2)(y1,y2)
based on a policy γ ∈ Γ where Γ is the set of all Borel
measurable functions from R2p to Rt.

Due to this commitment structure, receiver r’s strategy γ
can depend on senders’ signaling policies, i.e., γ(y1,y2) =
γ(η1, η2)(y1,y2). Let Ji denote the cost of player i for
i = 1, 2, r. The hierarchical commitment structure leads
to a Nash game played between the senders followed by a
Stackelberg game between the senders and the receiver [24].
Let Γ∗(η1, η2) denote receiver r’s best response set for a
given pair of senders’ policies (η1, η2) which is a subset of
Γ, and is given by

Γ∗(η1, η2) = argmin
γ∈Γ

Jr(η1, η2, γ(η1, η2)).

Under certain assumptions such as convexity of the re-
ceiver’s utility, which is true in our setting as it will be elab-
orated on in the following sections, receiver’s best response
set Γ∗ forms an equivalence class [24], and hence results in
the same random variable u for any γ∗ ∈ Γ∗ almost surely.
Therefore, the set of policies (η∗1 , η

∗
2 , γ

∗) are said to achieve
equilibrium provided that

Ji(η
∗
i , η

∗
−i, γ

∗(η∗i , η
∗
−i)) ≤ Ji(ηi, η

∗
−i, γ

∗(ηi, η
∗
−i)),

γ∗(η1, η2) = argmin
γ∈Γ

Jr(η1, η2, γ(η1, η2)),
(1)

for i ∈ {1, 2}, for all ηi ∈ Ω where η∗−i denotes the
equilibrium strategy of the other sender. Note that in the
equilibrium formulation provided in (1), all senders select
their strategies independent of the signal realizations. Thus
all senders are assumed to minimize their expected costs.

All players have their own individual quadratic (expected)
cost functions (objectives) denoted by Ji for i ∈ {1, 2, r},
given by

Ji(η1, η2, γ) = E[||Qix+Riu||2], (2)

where i = 1, 2, r, Qi ∈ Rm×p, and Ri ∈ Rm×t such
that t ≤ m and R⊤

r Rr is invertible. By using first order
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optimality conditions the receiver’s (essentially unique) best
response u∗ = γ∗(y1,y2) = −(R⊤

r Rr)
−1R⊤

r Qrx̂(η1, η2)
where x̂(η1, η2) = E[x|y1,y2] is the posterior estimate
of the state. Incorporating this into the senders’ objective
functions, lets us compute the best response correspondence
maps [24]. Particularly, the optimal response of sender i for
i = 1, 2 to a fixed strategy η−i of the other sender can be
obtained by solving the following optimization problem

min
ηi∈Ω

E[||Qix−Ri(R
⊤
r Rr)

−1R⊤
r Qrx̂(ηi, η−i)||2]. (3)

The objective function in (3) is quadratic in x, and x̂ and
senders’ policies can only affect the cost through influencing
x̂. Thus, we can simplify the senders’ optimization problem
in (3) as

E[||Qix−Ri(R
⊤
r Rr)

−1R′
rQrx̂||2]

= E[x⊤Q⊤
i Qix]− 2E[x̂⊤Λ⊤

i Qix] + E[x̂⊤Λ⊤
i Λix̂],

(4)

where Λi = Ri(R
⊤
r Rr)

−1R⊤
r Qr. The first term in (4)

does not depend on senders’ strategies. By using the law
of iterated expectations, the second term in (4) can be
rewritten as E[x̂⊤Λ⊤

i Qix] = E[E[x̂⊤Λ⊤
i Qix|y1,y2]] =

E[x̂⊤Λ⊤
i QiE[x|y1,y2]] = E[x̂⊤Λ⊤

i Qix̂]. Then, we can
rewrite the optimization problem in (3) equivalently as
minηi∈Ω E[x̂⊤Vix̂], where

Vi = Λ⊤
i Λi − Λ⊤

i Qi −Q⊤
i Λi. (5)

Without loss of generality, we take the first moment of x̂ to
be equal to E[x] = 0. The posterior covariance denoted by
Σ is given by E[||x̂−E[x̂]||2]=E[x̂x̂⊤].

To illustrate the above simplification, we provide an ex-
ample below where the state of the world x ∈ R3 consists
of 3 scalar random variables z, θA, and θB .

Example 1 Let us re-visit the example of the information
disclosure game between two news providers. To accommo-
date biases in the news providers, suppose that each news
provider wants to deceive the receiver about the true state.
We consider the state of the world as x =

[
z θA θB

]⊤
,

where z represents the true state which the receiver is
interested in, and θA, θB denote the innate biases that each
news provider has. Formally, let sender 1 have a cost given
by J1 = E[|z + θA − u|2] and the sender 2 have a cost
given by J2 = E[|z + θB − u|2]. On the other hand, the
receiver is only interested in z, and thus has the objective
function Jr = E[|z − u|2]. With these objective functions,
we have the following matrices: Q1=

[
1 1 0

]
, R1=−1,

Q2=
[
1 0 1

]
, R2=−1, Qr=

[
1 0 0

]
, Rr = −1.

Thus, by using the definition of Vi in (5), we have

V1 =

−1 −1 0
−1 0 0
0 0 0

 , V2 =

−1 0 −1
0 0 0
−1 0 0

 .

Later, in Section IV, we provide a complete solution to
Example 1.

III. EQUILIBRIUM COMPUTATION

While (3) offers a good starting point to compute the
best response for each sender, in its present form this is
a functional optimization problem for each sender on Borel
measurable functions in Ω which can be intractable. Thus,
in order to find these functions, in this section, we first
reformulate the optimization problem of each sender in (3) to
a semi-definite program (SDP). Then, we provide an optimal
solution to the SDP formulation which we then prove can be
achieved using linear plus noise policies, and thus provide
the optimal solution to the original problem in (3). In what
follows, we first state and prove a few lemmas which will
help identify the reaction set of sender i for a fixed strategy
of the other sender −i.

Lemma 1 For a fixed strategy of the other sender −i,
if the posterior covariance at the receiver is Σ−i (i.e.,
E[x|y−i]E[x|y−i]

⊤ = Σ−i), sender i can only induce
posterior covariance Σ in the set S(Σ−i) := {Σ | Σx ⪰
Σ ⪰ Σ−i}, holding for i = 1, 2.

Proof: Each sender’s strategy ηi induces a posterior covari-
ance matrix which by definition is positive semi-definite.
Thus, it follows that E[(x − x̂)(x − x̂)⊤] = Σx − Σ ⪰ O.
Further,

E[(x̂− E[x|y−i])(x̂− E[x|y−i])
⊤] = E[x̂x̂⊤]

− 2E[E[x|y−i]E[x|y−i,yi]
⊤] + E[E[x|y−i]E[x|y−i]

⊤].

Using the law of iterated expectations, the second term is

E[E[x|y−i]E[x|y−i,yi]
⊤] = E[E[x|y−i]E[x|y−i]

⊤].

Utilizing this, we have E[(x̂−E[x|y−i])(x̂−E[x|y−i])
⊤] =

Σ− Σ−i ⪰ O. Hence, we obtain Σx ⪰ Σ ⪰ Σ−i. ■
Therefore the posterior covariance matrix Σ induced by

sender i’s policy ηi should at least follow the condition
provided in Lemma 1. This result in Lemma 1 is intuitive. If
sender i’s policy is to reveal the state of the world x entirely,
then the posterior covariance induced by this strategy is
Σ = Σx. On the other hand, if sender i chooses a policy
with no information disclosure, then the receiver can always
use the signal from sender −i and as a result, its posterior
covariance is equal to Σ = Σ−i. Utilizing this, in the
following lemma we reformulate the optimization problem
in (3) as a semi-definite program.

Lemma 2 An equivalent SDP formulation of the optimiza-
tion problem in (3) is given by

min
S∈Sp

Tr(ViS) + Tr(Q⊤
i QiΣx)

s.t. Σx ⪰ S ⪰ Σ−i ⪰ O, (6)

where Sp denotes the space of positive semi-definite matrices
with dimension p×p. Moreover, the optimization problem in
(6) is a convex optimization problem.

Proof: Since E[x̂⊤Vix̂] = Tr(E[Vix̂x̂
⊤]), the optimiza-

tion problem in (3) for sender i for i = 1, 2, can
be written as minηi∈Ω Tr(E[Vix̂x̂

⊤]) + Tr(Q⊤
i QiΣx) =
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minηi∈Ω Tr(ViΣ) + Tr(Q⊤
i QiΣx). Therefore the senders’

strategies affect the cost only through the second moment of
the posterior estimate.

Note that for a given strategy of sender −i, the constraint
Σx ⪰ S ⪰ Σ−i is a necessary condition for S to satisfy
because of Lemma 1. The fact that this is sufficient fol-
lows from techniques similar to those in [19], [22]. More
precisely, given any S satisfying Σx ⪰ S ⪰ Σ−i, let
S = U⊤

x Λ
1
2
x TΛ

1
2
xUx where Σx = UxΛxU

⊤
x , which implies

I ⪰ T ⪰ O. Further, let T = U⊤
t ΛtUt, hence Λt,i ∈ [0, 1]

where Λt = diag(Λt,1, . . . ,Λt,p).
Considering a linear plus noise policy given by η(x) =

Lx+w where w ∼ N(0,W ), with L = Λ⊤
ℓ U

⊤
t Λ

− 1
2

x U⊤
x and

W = diag(w2
1, . . . , w

2
p) with (Λℓ,i)

2

(Λℓ,i)2+w2
i
= Λt,i completes

the proof. Thus, the SDP problem (6) is equivalent to the
original optimization problem of each sender in (3).

To prove convexity of the constraint, consider M1,M2 ∈
Sp,M1 ̸= M2 such that Σx ⪰ M1 ⪰ Σ−i and Σx ⪰ M2 ⪰
Σ−i. Since for any α ∈ [0, 1], the linear combination E(α) =
αM1+(1−α)M2 satisfies Σx ⪰ E(α) ⪰ Σ−i, we conclude
that the set Σx ⪰ S ⪰ Σ−i in (6) is a convex set. As Tr(.)
operator is linear in S, we conclude that (6) is a convex
optimization problem.■
The proof of Lemma 2 provides explicit construction of
linear plus noise policies for the senders which can achieve
any posterior S ∈ Sp such that Σx ⪰ S ⪰ O. Next,
we introduce a few quantities that build on the above two
lemmas and are useful to identify the equilibrium posteriors.

Definition 1 A posterior covariance Σ is said to be stable
for sender i if

min
Σx⪰S⪰Σ⪰O

Tr(ViS) = Tr(ViΣ).

For the optimization problem in (6), at a stable equilibrium
Σ, none of the senders want to reveal any more information.

Lemma 3 If a posterior covariance Σ∗ is stable and achiev-
able by both the senders, then Σ∗ is an equilibrium posterior
covariance.

Proof: Consider a posterior covariance Σ∗ which is stable
for both the senders. From proof of Lemma 2, there exists
a strategy η′i for each sender i = 1, 2 which can induce
this posterior covariance Σ∗. Consider the strategy profile
(η′1, η

′
2) such that E[x̂x̂⊤|y1, y2] = E[x̂x̂⊤|y1] = E[x̂x̂⊤|y2].

If Σ∗ is a stable posterior covariance for sender i, from
Definition 1, we have

min
Σx⪰S⪰Σ∗

Tr(ViS) = Tr(ViΣ
∗).

Since η′−i induces Σ∗, which is stable for sender i, η′i
belongs to sender i’s best response set (because it induces the
same posterior Σ∗). Hence (η′1, η

′
2) is an equilibrium strategy

profile resulting in the posterior covariance Σ∗. ■
Thus, to identify the Nash equilibrium among senders for

the strategic communication game, it is sufficient to identify

posteriors which are stable and achievable by all senders. To
identify such posteriors, we reformulate the SDP problem
given in (6) using the following lemma.

Lemma 4 For any Σ′ such that Σx ⪰ Σ′ ⪰ O, the
optimization problem

min
S∈Sp

Tr(ViS)

s.t. Σx ⪰ S ⪰ Σ′, (7)

can be equivalently written as

min
Z∈Sp

Tr(WiZ) + Tr(ViΣ
′)

s.t. I ⪰ Z ⪰ O, (8)

where Wi = (Σx − Σ′)
1
2Vi(Σx − Σ′)

1
2 .

Proof: Let Z := I −K2, with K =
(
(Σx − Σ′)

1
2

)†
(Σx −

S)
1
2 , where (.)† denotes the pseudo-inverse of a matrix.4

Further, let λ(K) denote the largest eigenvalue of K. Then
λ(K) ∈ [0, 1] [25]. By using the fact that any non-zero vector
is an eigenvector of identity matrix, it follows that λ(Z) ∈
[0, 1]. Thus, we have I ⪰ Z ⪰ O.

Next, for ease of exposition, we denote Σx−S by Q, i.e.,
Q = Σx − S. Then, we have (Σx − Σ′)

1
2K = Q

1
2 and Q

can be equivalently written as

Q = (Σx − Σ′)
1
2K2(Σx − Σ′)

1
2 . (9)

Since Z = I −K2, Q in (9) is equal to

Q = (Σx − Σ′)− (Σx − Σ′)
1
2Z(Σx − Σ′)

1
2 . (10)

Then, we have S = Σ′+(Σx−Σ′)
1
2Z(Σx−Σ′)

1
2 . Thus, the

objective function Tr(ViS) in (7) is equal to the objective
function Tr(WiZ) + Tr(ViΣ

′) in (8) where Wi = (Σx −
Σ′)

1
2Vi(Σx − Σ′)

1
2 which completes the proof. ■

Based on Lemmas 3 and 4, we have the following result:

Proposition 1 If Tr(ViΣ
∗
i ) = minΣx⪰S⪰O Tr(ViS), then

W ∗
i =(Σx − Σ∗

i )
1
2Vi(Σx − Σ∗

i )
1
2 ⪰O.

Proof: We note that if Tr(ViΣ
∗
i ) = minΣx⪰S⪰O Tr(ViS),

then we have

Tr(ViΣ
∗
i ) = min

Σx⪰S⪰Σ∗
i

Tr(ViS). (11)

Then, by using Lemma 4, we rewrite (11) as

min
Z∈Sp

Tr(W ∗
i Z) + Tr(ViΣ

∗
i )

s.t. I ⪰ Z ⪰ O, (12)

where W ∗
i = (Σx − Σ∗

i )
1
2Vi(Σx − Σ∗

i )
1
2 . Since the min-

imum value in (12) is equal to Tr(ViΣ
∗
i ), we must have

minI⪰Z⪰O Tr(WiZ) = 0 which happens when the sym-
metric matrix W ∗

i is positive semi-definite, i.e., W ∗
i =

(Σx −Σ∗
i )

1
2Vi(Σx −Σ∗

i )
1
2 ⪰ O. To show this, suppose that

there exists a Q ∈ Rp×r where r > 0 such that Z =QQ⊤.

4We note that since Σx − Σ′ might not be invertible, we use pseudo-
inverse of a square matrix, which always exists.
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Then, we get Tr(W ∗
i Z) = Tr(Q⊤W ∗

i Q) =
∑r

ℓ=1 q
⊤
ℓ W

∗
i qℓ,

where qℓ is the ℓth column of Q. We note that if W ∗
i is

not a positive semi-definite matrix, then we can find a Q
matrix such that Tr(W ∗

i Z) is less than 0. However, since
we have minI⪰Z⪰O Tr(W ∗

i Z) = 0, we conclude that W ∗
i

is a positive semi-definite matrix. ■
In Proposition 1, we have shown that when there is no

constraint on the posterior covariance in the optimization
problem given by (6), i.e., when Σ−i = O, the overall
minimum value achieved in (6) is given by Tr(ViΣ

∗
i ).

Further, such a Σ∗
i in Proposition 1 may not be unique. In

other words, there can be multiple Σ∗
i s with W ∗

i ⪰ O and
achieve the same minimum value Tr(ViΣ

∗
i ). Moreover, such

Σ∗
i may not be orderable. We utilize tools developed thus far

to prove that any Σ′ ⪰ Σ∗
i is stable for sender i.

Lemma 5 Let Tr(ViΣ
∗
i ) = minΣx⪰S⪰O Tr(ViS). Then,

for any Σ′ such that Σx ⪰ Σ′ ⪰ Σ∗
i ⪰ O, we have

min
Σx⪰S⪰Σ′

Tr(ViS) = Tr(ViΣ
′). (13)

Proof: By using Lemma 4, we have

min
Σx⪰S⪰Σ′

Tr(ViS) = min
I⪰Z⪰O

Tr(WiZ) + Tr(ViΣ
′),

where S = Σ′ + (Σx −Σ′)
1
2Z(Σx −Σ′)

1
2 and Wi = (Σx −

Σ′)
1
2Vi(Σx − Σ′)

1
2 . By definition, Σx − Σ∗

i ⪰ Σx − Σ′.
Hence, there exists a K ′ with λ(K ′) ⊂ [0, 1] such that (Σx−
Σ∗

i )
1
2K ′ = (Σx −Σ′)

1
2 ⪰ O [25]. Using the unique positive

semi-definite square root of a positive semi-definite matrix,
we have

Wi = (Σx − Σ′)
1
2Vi(Σx − Σ′)

1
2

= K ′(Σx − Σ∗
i )

1
2Vi(Σx − Σ∗

i )
1
2K ′ ⪰ O,

since W ∗
i = (Σx − Σ∗

i )
1
2Vi(Σx − Σ∗

i )
1
2 ⪰ O from Propo-

sition 1. Thus, minI⪰Z⪰O Tr(WiZ) is equal to 0, and we
have minΣx⪰S⪰Σ′ Tr(ViS) = Tr(ViΣ

′). ■
Lemma 5 hints at the possibility of existence of multiple

equilibria. To this end, we identify the set of stable posteriors:

Proposition 2 The full set of posterior covariances that are
stable for sender i for i = 1, 2 is given by the set {Σ′ |
Wi = (Σx − Σ′)

1
2Vi(Σx − Σ′)

1
2 ⪰ O}.

Proof: By using Lemma 4, the optimization problem
minΣx⪰S⪰Σ′ Tr(ViS) can be equivalently written as
minI⪰Z⪰O Tr(WiZ) + Tr(ViΣ

′). If Wi = (Σx −
Σ′)

1
2Vi(Σx − Σ′)

1
2 ⪰ O, the minimum value is equal to

Tr(ViΣ
′). Thus, every Σ′ that generates Wi ⪰ O is stable

for sender i. ■
In particular, by using Lemma 5 and Proposition 2, we

can show that any posterior covariance Σ∗ ∈ ∩2
i=1Di where

Di = {Σ′ | Σx ⪰ Σ′ ⪰ Σ∗
i } is a stable posterior, which are

also achievable using linear plus noise policies as proved in
Lemma 2.

Proposition 3 Full information revelation is always an
equilibrium.

Proof: The proof follows directly from noticing that Wi =
O ⪰ O, for i = {1, 2}. Since Σx is stable and achievable for
all senders, it is also an equilibrium posterior covariance. ■

This is in line with the observations of [16] for finite state
and action spaces. It can be seen that even if both senders
have identical preferences, full revelation is an equilibrium
outcome.5 While Proposition 2 identifies a necessary and suf-
ficient condition for the set of equilibrium posteriors, it only
provides a way to verify if a given posterior is an equilibrium
posterior but does not provide a constructive approach to
identify an equilibrium posterior. In the following sub-section
we propose an algorithm to identify an equilibrium posterior
explicitly.

Sequential Optimization to Find Equilibrium Posteriors

We now propose an algorithm to identify admissible equi-
librium posteriors for the two-sender game. The algorithm
uses the standard SDP solver in [26] with minor variations.

Since Vi in general can be singular, there can be multiple
equivalent (minimal) solutions to the SDP problem (at line
4) in the Algorithm 1. In order to provide the largest feasible
posterior set among these solutions, we choose the one
obtained from the following optimization problem

min
Σx⪰S′

i⪰O
||Σ− 1

2
x S′

iΣ
− 1

2
x ||∗

s.t. Tr(ViSi) ≥ Tr(ViS
′
i), (14)

where ||.||∗ denotes the nuclear norm which is equal to
summation of the singular values of a matrix that is used
to obtain a low rank solution in (14). Since the optimization
variable in (14) is a symmetric positive semi-definite matrix,
the nuclear norm in this case is equal to summation of
the eigenvalues of the matrix Σ

− 1
2

x S′
iΣ

− 1
2

x which are in
[0, 1]. To be more precise, the eigenvalues of Σ

− 1
2

x S′
iΣ

− 1
2

x

are equal to 1 corresponding to the negative eigenvalues of
W1 = Σ

1
2
x V1Σ

1
2
x and take arbitrary values in [0, 1] for the 0

eigenvalues of W1. The nuclear norm minimization problem
(14) is convex [27] and finds an equilibrium posterior where
Σ

− 1
2

x S′
iΣ

− 1
2

x is a projection matrix.

Proposition 4 The posterior Σ∗ obtained from Algorithm 1
is an equilibrium posterior.

Proof: The fact that Σ∗ is stable for sender 1 follows directly
from Lemma 5 and Σ∗ ⪰ Σ∗

1. Further, since Σ∗ is obtained
from minimization in line (9), (10) of Algorithm 1, using
Lemma 4, we directly obtain (Σx−Σ∗)

1
2V2(Σx−Σ∗)

1
2 ⪰ O,

and thus from Proposition 2, Σ∗ is stable for sender 2. Due to
Lemma 2, Σ∗ is achievable using linear plus noise policies.
Therefore, Σ∗ is an equilibrium posterior. ■

Due to the sequential nature of the algorithm, for a two
sender problem, we are able to find two admissible equi-
librium posteriors. Further, the two equilibrium posteriors

5In case of identical objective functions for both senders, such a full
revelation policy may not be admissible, in the sense that there can be
other policies (different from full revelation) for the senders (one being the
optimal single sender policy adopted by both) which would lead to lower
average cost for the senders.
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Algorithm 1 Finding an Equilibrium Posterior via SDP
1: Parameters: Σx

2: Compute Vi ∀i ∈ {1, 2} by using (5)
3: Variables: Si, S

′
i ∈ Sp with Si, S

′
i ⪰ O ∀i ∈ {1, 2}

4: Solve: minΣx⪰S1⪰O Tr(V1S1), by using CVX

5: Solve: minΣx⪰S′
1⪰O ||Σ

− 1
2

x S′
1Σ

− 1
2

x ||∗,
6: s.t. Tr(V1S1) ⪰ Tr(V1S

′
1) by using CVX

7: Σ∗
1 ← S′

1

8: Solve: minΣx⪰S2⪰Σ∗
1
Tr(V2S2), by using CVX

9: Solve: minΣx⪰S′
2⪰Σ∗

1
||Σ− 1

2
x S′

2Σ
− 1

2
x ||∗,

10: s.t. Tr(V2S2) ⪰ Tr(V2S
′
2) by using CVX

11: Return: Σ∗ ← S′
2

obtained can yield different costs to the players. Here, we
emphasize that the sequential nature of the algorithm is
just to find an admissible and stable posterior but this does
not imply anything about commitment orders for policy
computation. This posterior can be achieved by simultaneous
commitment by the senders to the same linear plus policies
given by Lemma 2.

IV. NUMERICAL RESULTS

In this section, we provide simulation results to analyze
in several examples the effects of changing correlations and
alignments among senders in the persuasion game. In these
numerical results, we consider a state of the world given
by the 3-dimensional vector x =

[
z θA θB

]⊤
. For all

the examples considered, we take the cost functions of the
players given as

J1 =E[|z + βθA + αθB − u|2], (15)

J2 =E[|z + αθA + βθB − u|2], (16)

Jr =E[|z − u|2], (17)

where we specify α and β values for each example. We note
that both senders having access to the full state allows us to
have such objectives for the sender which depend on both
θA, θB .

Note that as proved in Section III (Proposition 2) there can
be multiple equilibria in each of the following situations that
would be described below, However, to derive insights from
the model, we analyze the costs that result in the equilibrium
attained by Algorithm 1.

1) Construction of Nash equilibrium policies: We first
consider α = 0, and β = 1 and a zero mean Gaussian prior
on the state of the world with Σx given by

Σx =

 1 0.5 0.7
0.5 1.5 0.2
0.7 0.2 1

 . (18)

By using Algorithm 1, we get a stable equilibrium posterior

Σ∗ =

0.9915 0.5171 0.7546
0.5171 1.4659 0.0909
0.7546 0.0909 0.6508

 . (19)

This achieves a cost of J1 = −2.02, J2 = −3.96. From
Lemma 2, we can construct Nash equilibrium policies to be
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Fig. 2. The cost of the (a) receiver, (b) senders with respect to ρab.

η1(x) = η2(x) = Lx, where

L =

−0.9093 0.0756 −0.1657
0.0967 −0.8367 0.2766

0 0 0

 .

Notice that the senders’ strategies turned out to be noiseless
(W = O). Considering this insight, we aim to further
explore in future work whether we can in general restrict our
attention to linear policies for equilibrium posteriors obtained
using Algorithm 1.

2) Correlation between the state of the world parameters:
In the second numerical example, we consider the same
setting as in the first example, i.e., α = 0, and β = 1, but
with a different covariance matrix Σx. Here, we take

Σx =

 1 0.5 0.5
0.5 1 ρab
0.5 ρab 1

 , (20)

where ρab is the correlation coefficient between θA and θB
which is given by ρab =

Cov(θA,θB)√
V ar(θA)V ar(θB)

. In this example,

we vary ρab = {−0.5,−0.4, · · · , 0.9} and find the cost
of receiver and the senders obtained by Algorithm 1. In
Fig. 2(a), we see how the error covariance of the receiver,
i.e., Jr = E[||z − u||2], changes with respect to ρab. When
ρab < 0, θA, and θB are negatively correlated, and as a
result, senders reveal more information to the receiver about
the state of the world z. As the correlation ρab increases, the
information revealed to the receiver decreases and the cost of
the receiver Jr increases. In Fig. 2(b), we see how the cost
of the receiver changes with respect to ρab. As the senders’
goals become aligned, they can manipulate the receiver more,
and decrease their cost effectively.

3) Correlation between senders’ objectives: In the third
numerical example, we consider Σx in (20) with ρab = 0.25.
In this example, we take β = 1 and vary α ∈ [−1, 1]. Thus,
the senders’ objective functions include both the parameters
θA and θB where we have J1 = E[||z+θA+αθB−u||2] and
J2 = E[||z+αθA+θB −u||2]. In this example, α represents
the alignment of interests in θA, θB for the senders. As in
the previous examples, the receiver is only interested in z
and thus, it has the objective function Jr = E[||z−u||2]. We
see in Fig. 3(a) that when α = −1, i.e., when the senders’
interests are exactly mismatched, the receiver can use this
to its advantage and recover z perfectly and thus, Jr = 0
when α = −1. As α increases, the correlation between
the senders’ objectives increases. As a result, the receiver
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Fig. 3. The cost of the (a) receiver, (b) senders with respect to α.

gets less information about the parameter z, and its cost Jr
increases with α. When there is an exact mismatch between
the senders’ interests, i.e., when α = −1, we see in Fig. 3(b)
that the senders’ costs are high, as the receiver can recover
z perfectly. As α gets closer to 0, the senders’ objective
functions become less dependent, and as a result, senders
can achieve their minimum cost. As the senders’ objective
functions are positively correlated, i.e., when α > 0, the cost
is increasing for both senders.

V. CONCLUSION AND DISCUSSION

In this paper, we considered a strategic communication
game between 2 senders and a receiver with misaligned
objective functions. We first posed the senders’ optimization
problems in terms of the receiver’s posterior covariance.
Then, by constructing an equivalent SDP, we proposed a
sequential optimization technique to find the stable posteriors
which can be achieved by using linear plus noise policies,
and as a result, they are in fact the equilibrium policies for
the senders. Through simulations, we showed that having
two senders is beneficial for the receiver as its estimation
error cannot get worse as we go from one to two senders.
Further, it is beneficial for the receiver to have senders
with maximum misalignment between their objectives. As an
interesting future direction, we plan to analyze theoretically,
the effect of varying alignment between the senders on the
set of equilibrium posteriors.

Although this paper deals with a game between 2 senders
and a receiver, similar tools can be used to extend this to a
general m > 2 sender communication game. In particular, a
sequential optimization technique, in line with Algorithm 1,
can be designed considering objectives of all senders. This
can help analyze both theoretically and empirically the effect
of adding senders on the set of equilibria. We will extend
our results to the most general case with m > 2 senders in a
future journal version of this work in addition to investigating
the optimality of purely linear strategies for the senders.
Extension of our work to account for noisy communication
channels between the senders and the receiver is also an
interesting future direction.
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[21] S. Sarıtaş, S. Yüksel, and S. Gezici, “Dynamic signaling games with
quadratic criteria under Nash and Stackelberg equilibria,” Automatica,
vol. 115, p. 108883, 2020.
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[24] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory.
SIAM, 1998.
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